ACVIM Consensus Statement J Vet Intern Med 2007;21:542-558 Consensus Statements of the American College of Veterinary Internal Medicine (ACVIM) provide veterinarians with guidelines regarding the pathophysiology, diagnosis, or treatment of animal diseases. The foundation of the Consensus Statement is evidence-based medicine, but if such evidence is conflicting or lacking, the panel provides interpretive recommendations on the basis of their collective expertise. The Consensus Statement is intended to be a guide for veterinarians, but it is not a statement of standard of care or a substitute for clinical judgment. Topics of statements and panel members to draft the statements are selected by the Board of Regents with input from the general membership. A draft prepared and input from Diplomates is solicited at the ACVIM Forum and via the ACVIM Web site and incorporated in a final version. This Consensus Statement was approved by the Board of Regents of the ACVIM before publication. ### Guidelines for the Identification, Evaluation, and Management of Systemic Hypertension in Dogs and Cats S. Brown, C. Atkins, R. Bagley, A. Carr, L. Cowgill, M. Davidson, B. Egner, J. Elliott, R. Henik, M. Labato, M. Littman, D. Polzin, L. Ross, P. Snyder, and R. Stepien Key words: Blood pressure; Hypertension; Proteinuria. #### **Section 1: Generation of the Guidelines** In the past 15 years, recognition of the importance of systemic hypertension in dogs and cats has led to fundamental changes in our understanding of the pathophysiology and management of several diseases. Accordingly, in 2000, the ACVIM organized an expert panel on systemic hypertension in dogs and cats. The panel presented its initial findings as an oral Consensus Statement at the ACVIM Forum in 2001. We continued our efforts at the ACVIM Forum in 2002, where we presented a revised position statement. Following the recent publications of The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure by the National High Blood Pressure Education program (National Heart, Lung, and Blood Institute, National Institutes of Health)² and the 2003 European Society of Hypertension-European Society of Cardiology Guidelines for the Management of Arterial Hypertension,3 the panel met at the ACVIM Forum in 2004 to expand the From the University of Georgia, Athens, GA (Brown); North Carolina State University, Raleigh, NC (Atkins, Davidson); Washington State University, Pullman, WA (Bagley); University of Guelph, Guelph, ON, Canada (Carr); University of California, Davis, CA (Cowgill); Ludwig-Maximilians-University, Munich, Germany (Egner); Royal Veterinary College, University of London, London, UK (Elliott); University of Wisconsin, Madison, WI (Henik, Stepien); Tufts University, North Grafton, MA (Labato, Ross); University of Pennsylvania, Philadelphia, PA (Littman); University of Minnesota, St. Paul, MN (Polzin); University of Florida, Gainesville, FL (Snyder). Reprint requests: Scott Brown, Dept Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602; e-mail: sbrown@vet.uga.edu. Copyright © 2007 by the American College of Veterinary Internal Medicine 0891-6640/07/2103-0028/\$3.00/0 consensus statement and to develop similar comprehensive guidelines for dogs and cats. The guidelines were further revised in 2005-2006, and this update was presented at the ACVIM Forum in 2006. Our collective goal was to utilize the best available evidence in making our recommendations and to provide the veterinary practitioner with practical information, to facilitate informed decisions. We do not intend these guidelines to be prescriptive, and we are aware the rapid pace of discovery of knowledge in this area ensures that our guidelines will be outdated soon after publication. It is our hope that these guidelines will form the basis for educating veterinarians on the clinical importance of hypertension and measurements of blood pressure (BP), and will facilitate the development of a rational approach to the diagnosis and management of hyperten- #### **Section 2: Measurement of BP** Diagnosis and management of hypertension in the clinical patient is based on measurement of the patient's BP. The BP can be measured directly by an intra-arterial means⁵⁻⁸ or indirectly by devices that incorporate a compressive cuff. Arterial puncture by needle has been used for clinical patients in veterinary medicine,⁹ and radiotelemetric implants have been employed in dogs¹⁰⁻¹³ and cats¹⁴⁻¹⁹ and may yet prove to be clinically useful as direct devices in veterinary medicine. However, at the present time, indirect devices are generally more clinically acceptable and in much wider use.^{1,4,11,20-65} A new technology, high definition oscillometry, has been evaluated in dogs and cats under anesthesia. Preliminary results are promising but further supportive data in conscious animals are needed. Ideally, BP should be measured with devices that have been validated in the species of interest and under | Device | Manufacturer | Device type | | |---------------------------|---|------------------------------|--| | Cardell Model 9401, 2, 3 | Sharn Veterinary Inc.
http://www.sharnvet.com | Oscillometry | | | Dinamap Model 8300 | No longer available | Oscillometry | | | Jorgensen Model J5373 | Jorgensen Labs
http://www.jorvet.com | Doppler ultrasonography | | | Memoprint, Memodiagnostic | No longer available | Oscillometry | | | Parks Model 811-B | Parks Medical Electronics
http://www.parksmed.com | Doppler ultrasonography | | | /et-Dop | Vmed Technology Inc
http://www.vmedtech.com | Doppler ultrasonography | | | | VetSpecs Medical Systems
http://www.vetspecs.com | Pressure plethysmography | | | MemoDiagnostic | S+B medVET
http://www.submedvet.com | High Definition Oscillometry | | | MDpro, MD15, MD90 | Distributed through HESKA (USA/CAN)
MDscientific
http://www.heska.com | High Definition Oscillometry | | Table 1. Examples of indirect blood pressure measurement devices in use in dogs and cats. the circumstances in which the patient is being tested. Thus, for the diagnosis of systemic hypertension in dogs and cats, the indirect device used should be one that is commonly utilized or designed for veterinary use and that has been previously validated in conscious animals of the species of interest. Standards for the validation of indirect BP measuring devices in people have been published. Unfortunately, at the present time, no indirect device has met these validation criteria for use in conscious dogs or cats. The original validation criteria were established for use in humans, in whom the methods for BP measurement are more standardized and much easier to achieve. Recognizing this limitation, the panel advocates different criteria for the validation of devices in animals (Appendix). Until proper validation studies are conducted, BP measurements in veterinary patients will continue to be obtained with the use of currently available indirect devices. We recognize that validation is ongoing for indirect devices in current use and that many of these devices are reliable (Table 1). We anticipate that some of these devices will meet our criteria and that more reliable devices may be required as our knowledge advances and thresholds for intervention are further refined. We also anticipate that subsequent revision of our guidelines and the acquisition of new knowledge will lead to refinement of our validation criteria. To obtain reliable values in the measurement of BP, it is important to follow a standard protocol (Table 2). The individual making the measurements should be patient and skilled in the handling of animals, clients, and equipment. Although it is critical for the veterinarian to appreciate fully the subtleties of BP measurement, it is generally preferred to have these measurements obtained by a skilled animal health technician who has been suitably trained in obtaining BP. Acquiring expertise in the use of indirect BP measurement devices requires hours of training; experienced operators enhance the reliability of indirect measurement. In the panel's experience, a leading cause of indirect device failure is technical error associated with personnel inexperience. BP may be affected by stress or anxiety associated with the measurement process^{16,32,33,45} and these changes may result in a false diagnosis of hypertension.44 This anxiety-induced, artifactual increase in BP is often referred to as white-coat hypertension, a reference to the white coat of the medical professional measuring the BP. Thus, it is important for the measurement room to be quiet and for 5–10 minutes to elapse for the patient to acclimate to the room. This accommodation reduces the mean anxiety-induced artifact (so-called white-coat effect) to <20 mm Hg in cats. 16 Similar results may be expected in dogs. Although many causes of measurement error lead to an erroneously high value for BP, this is not always the case. The minute-to-minute variability of BP, inconsistency of BP measuring devices, technical errors, transient dehydration, and parasympathetic overactivity can all produce falsely low BP values. The position of the patient and cuff should be welltolerated, with the cuff at or close to the level of the right atrium. The first measurement should be discarded and the average of 3 to 7 consecutive, consistent indirect measurements should be obtained. A standard form for recording the results of the BP measurements should be developed. To allow for reliable comparison of serial measurements, each facility should follow carefully a standard protocol. This requires that the animal position and attitude, cuff size and site, and cuff site circumference (cm) be carefully considered (ideally these parameters would
also be noted in the animal's record). All of the values obtained, the rationale for excluding certain values, the final (mean) result, and the interpretation of the final result by the veterinarian should be noted. #### **Table 2.** Protocol for a blood pressure (BP) measurement session. - The accuracy (calibration) of the BP device should be tested semi-annually (see Appendix). - · The procedure must be standardized. - The environment should be isolated, quiet, away from other animals, and generally with the owner present. The patient should not be sedated and should be allowed to remain quietly in the measurement room for 5–10 minutes before attempting BP measurement. - The animal should be gently restrained in a comfortable position, ideally in ventral or lateral recumbency to limit the distance from the heart base to the cuff (if more than 10 cm, a correction factor of +0.8 mm Hg/cm below the heart base can be applied). - The cuff should be approximately 40% of circumference of the cuff site in dogs¹ and 30–40% in cats.⁴ The cuff size should be noted in the medical record for future reference. - The cuff may be placed on a limb or the tail, and will vary with animal conformation and user preference. The site for cuff placement should be recorded in the medical record. - The same individual (preferably a technician) should perform all blood pressure measurements following this standard protocol. Training of this individual is essential. - The patient should be calm and motionless. - The first measurement should be discarded. At least 3, and preferably 5–7, consecutive, consistent (<20% variability in systolic values) values should be recorded. - · Repeat as necessary, changing cuff placement as needed to obtain consistent values. - · Average all values to obtain the BP measurement. - · If in doubt, repeat the measurement subsequently. - Written records should be kept on a standard form and include cuff size and site, values obtained, rationale for excluding any values, the final (mean) result, and interpretation of the results by a veterinarian. **Table 3.** Arterial blood pressure (mm Hg) values obtained from normal dogs and cats. | Measurement Method | N | Systolic | Mean | Diastolic | |---------------------------------|------|---------------|--------------|-------------| | Dogs | | | | | | Intra-arterial | | | | | | Anderson et al ¹⁶³ | 28 | 144 ± 156 | 104 ± 13 | 81 ± 9 | | Cowgill et al ¹⁶⁴ | 21 | 148 ± 16 | 102 ± 9 | 87 ± 8 | | Chalifoux et al ¹⁶⁵ | 12 | 154 ± 31 | 115 ± 16 | 96 ± 12 | | Stepien et al ⁶⁴ | 27 | 154 ± 20 | 107 ± 11 | 84 ± 9 | | Oscillometry | | | | | | Bodey and Michell ⁴² | 1267 | 131 ± 20 | 97 ± 16 | 74 ± 15 | | Coulter et al ⁴³ | 51 | 144 ± 27 | 110 ± 21 | 91 ± 20 | | Kallet et al44 | 14 | 137 ± 15 | 102 ± 12 | 82 ± 14 | | Stepien et al ⁶⁴ | 28 | 150 ± 20 | 108 ± 15 | 71 ± 18 | | Meurs et al41 | 22 | 136 ± 16 | 101 ± 11 | 81 ± 9 | | Doppler ultrasonography | | | | | | Chalifoux et al ¹⁶⁵ | 12 | 145 ± 23 | | | | Stepien et al ⁶⁴ | 28 | 151 ± 27 | | | | Remillard et al ³³ | 5 | 150 ± 16 | | | | Cats | | | | | | Intra-arterial | | | | | | Brown et al, 1997166 | 6 | 125 ± 11 | 105 ± 10 | 89 ± 9 | | Belew et al, 1999 16 | 6 | 126 ± 9 | 106 ± 10 | 91 ± 11 | | Oscillometry | | | | | | Bodey et al, 1998 59 | 104 | 139 ± 27 | 99 ± 27 | 77 ± 25 | | Mishina et al, 1998 60 | 60 | 115 ± 10 | 96 ± 12 | 74 ± 11 | | Doppler ultrasonography | | | | | | Klevans et al58 | 4 | 139 ± 8 | | | | Kobayashi et al ⁶⁹ | 33 | 118 ± 11 | | | | Sparkes et al ⁴ | 50 | 162 ± 19 | | | | Lin et al ¹⁶⁷ | 53 | 134 ± 16 | | | #### Section 3: Normal Values for Canine and Feline BP Various studies have reported the BP values for normal dogs and cats (Table 3). These values vary, reflecting differences in subject populations, measurement techniques, and animal handling. This variability emphasizes the importance of standardization of the technique in veterinary practice. Additional factors affect what is considered to be the normal BP. In people, age-related increases in systolic BP and pulse pressure have been well-characterized.68 The effects of age are less clear in dogs and cats. A small increase in BP of 1-3 mm Hg/year has been noted with aging in dogs, 42,50 although a similar effect of age has not been observed in all studies of dogs.33,41 In cats, BP was found to increases with age in a heterogeneous population of animals.⁵⁹ However, there was no age effect in 2 studies of normal cats, 4,69 and a comparatively small increase of 1.5 mm Hg/year was noted for mean BP in a third study of apparently healthy cats.60 There is a reported effect of sex in dogs, with males having higher and intact females lower BP values, the difference being <10 mm Hg.⁴² Most cats evaluated by veterinarians are neutered and there is no apparent effect of sex on the BP values in these cats.^{59,60} There are substantial interbreed differences in the BP of dogs, most notably with sighthounds (eg, Greyhounds and Deerhounds), in which BP is higher than in mongrels⁷⁰ by approximately 10–20 mm Hg.^{42,70,71} The BP values of other breeds vary by 7–10 mm Hg⁴² and the panel recognizes that breed-specific ranges for normal and abnormal BP may need to be developed. In cats, there is no apparent effect of breed on BP.⁵⁹ Obesity is associated with increases in BP in a variety of species. 72-77 This effect has been studied experimentally in dogs; 72,78 a small (<5 mm Hg) increase in BP was noted in obese dogs by oscillometry 42 but not by **Table 4.** Diseases associated with secondary hypertension in dogs and cats. | Prevalence of | | | | |---------------------------------|----------------------------|--------------|--| | Disease or Condition | Hypertension (%) | Reference(s) | | | Dogs | | | | | Chronic kidney disease | 93 | 163 | | | | 60 | 164 | | | | 80 | 164 | | | | 79 | 168 | | | | 9 | 42 | | | | 62 | 101 | | | | 19 | 169 | | | Acute kidney disease | 87 | 170 | | | Hyperadrenocorticism | | | | | Native | 73 | 81,168 | | | Iatrogenic | 80 | | | | Diabetes mellitus | 46 | 171 | | | | 24 | 168 | | | Obesity | small effect | 33,42,72,78 | | | Primary hyperaldo-
steronism | rare disease | 172 | | | Pheochromocytoma | 43% | 173 | | | | 86% | 174 | | | Hypothyroidism | uncommon | 175 | | | Cats | | | | | Chronic kidney disease | 46 | 69 | | | | 65 | 105 | | | | 19 | 176 | | | Diabetes mellitus | 0 | 55 | | | | no increase of BP | | | | Hyperthyroidism | 87 | 65 | | | | 23 | 69 | | | | 5 pre-treatment and | 105 | | | | 25 post-treatment | 82 | | | Obesity | hypertension uncommon | 59 | | | Primary hyperaldo- | 50%-100% | 89,177-183 | | | steronism | uncommon disease | | | | Pheochromocytoma | up to 100% unusual disease | 184, 185 | | Variabilities in inclusion criteria, measurement techniques, and definition of hypertension make direct comparisons of prevalence data difficult. Doppler ultrasonography.³³ In cats, there was no effect of obesity on BP observed by oscillometry.⁵⁹ #### **Section 4: Hypertension Definitions** Systemic hypertension, which is synonymous with sustained increases in BP, can generally be categorized into 1 of 3 types. It may be caused by measurement artifact (ie, stress-induced or white-coat hypertension), occur in association with other disease processes that may increase BP (ie, secondary hypertension) or occur in the absence of other potentially causative disease processes (ie, idiopathic hypertension). Accordingly, we suggest the following definitions and criteria. #### White-Coat Hypertension High BP caused by an artifactual increase in BP that occurs as a consequence of the measurement process, generally due to autonomic nervous system alterations from the effects of excitement or anxiety on higher centers of the central nervous system. This type of hypertension resolves under conditions that reduce or eliminate the artifact (eg, altering measurement conditions to reduce the animal's anxiety or measuring BP at the animal's home). Although there is some evidence that the presence of white-coat hypertension in an otherwise normotensive person is a risk factor for subsequent hypertensive damage,79 there is presently no justification for treating white-coat hypertension in dogs or cats. Anxiety-induced increases in BP can lead to a false diagnosis of systemic hypertension.^{33,44} Unfortunately, the effects of anxiety on BP are not predictable, as some animals exhibit a dramatic increase in BP whereas others do not, and some animals may even exhibit a decrease in BP as a result of the measurement process.16 The latter effect presumably is due to parasympathetic nervous system overactivity. #### Secondary Hypertension This type of hypertension involves high BP concurrent with clinical disease or a condition known to cause hypertension (Table 4) or hypertension associated with the administration of therapeutic agents that are known to cause an elevation of BP, such as glucocorticoids, mineralocorticoids, erythropoietin, sodium chloride, phenylpropanolamine, and nonsteroidal anti-inflammatory drugs. Hypertension may persist despite effective treatment of the primary condition on the BP may increase after therapy is initiated. The presence of a condition known to cause secondary hypertension, even if effectively resolved by therapeutic intervention, should prompt serial follow-up evaluations. #### Idiopathic Hypertension The terms primary or essential hypertension have often been used in people to describe hypertension in the absence of any identifiable predisposing causes, and essential hypertension has been reported in dogs. 84-88 Subclinical kidney disease is present frequently in people and animals with hypertension, making it difficult to establish a valid diagnosis of primary or essential hypertension. Furthermore, the presence of chronically increased BP suggests that
one or both of the neurohumoral and renal systems responsible for regulating BP is abnormal. Thus, the panel recommends the use of the term idiopathic in place of essential for animals in which high BP occurs in the absence of an overt, clinically apparent disease that is known to cause secondary hypertension. A diagnosis of idiopathic hypertension is established when reliable BP measurements demonstrate a sustained increase in BP concurrent with normal CBC, serum biochemistry, and urinalysis. Unfortunately, increased BP may induce polyuria (so-called pressure diuresis) and thus, the presence of low urine specific gravity (<1.030) in a patient with high BP does not establish that kidney disease is present. On the other hand, the presence of concentrated urine (>1.030) makes kidney disease less likely. **Table 5.** Evidence of target organ damage (TOD). | Tissue | Hypertensive injury (TOD) | Clinical Findings Indicative of TOD | Diagnostic Test(s) | | |----------------------|--|---|---|--| | Kidney | Progression of chronic kidney disease | Serial increases in SCr or decrease in GFR Proteinuria, microalbuminuria | SCr and BUN Urinalysis with quantitative assessment of proteinuria and/or albuminuria GFR measurement | | | Eye | Retinopathy/choroidopathy Acute onset blindness Exudative retinal detachment Retinal hemorrhage/edema Retinal vessel tortuosity or perivascular edema Papilledema Vitreal hemorrhage Hyphema Secondary glaucoma Retinal degeneration | | Ophthalmic evaluation including a funduscopic examination | | | Brain | Encephalopathy
Stroke | Centrally localizing neurological signs (brain or spinal cord) | Neurological exam
Magnetic resonance or other imaging | | | Heart and
Vessels | Left ventricular hypertrophy
Cardiac failure | Left ventricular hypertrophy Gallop rhythm Arrhythmias Systolic murmur Evidence of cardiac failure Hemorrhage (eg, epistaxis, stroke) | Auscultation Thoracic radiography Cardiac ultrasound Electrocardiogram | | SCr, serum creatinine concentration; GFR, glomerular filtration rate; BUN, blood urea nitrogen concentration. Since subclinical kidney disease or other condition known to cause secondary hypertension may be present in animals with idiopathic hypertension, the panel recommends that diagnostic tests in addition to CBC, serum biochemistry, and urinalysis be considered in affected animals. Depending on the clinical findings, these tests may include renal ultrasound examination (dog, cat), measurement of glomerular filtration rate (dog, cat), quantitative assessment of proteinuria (dog, cat), thyroid hormone determination (cat), and blood cortisol profile (dog). Furthermore, additional tests to consider in individual patients include serum and urine aldosterone and catecholamine concentrations and adrenal ultrasound examination. Although secondary hypertension remains the most common category of high BP in dogs and cats, idiopathic hypertension is more common than previously recognized, accounting for approximately 18–20% of cases in cats. 89,90 #### Isolated Systolic or Diastolic Hypertension These terms refer to the occurrence of an increase in systolic only or diastolic only pressure. Such a finding may be artifactually produced by underestimation or overestimation of the peak or trough of the blood pressure curve by an indirect device. The presence of this type of artifact should be considered whenever a very small (<20 mm Hg) or large (>60 mm Hg) pulse pressure is reported by an indirect device. True isolated hypertension of either type may represent white-coat, secondary or idiopathic hypertension. Currently, there is an emphasis on the diagnosis of systolic hypertension in veterinary medicine. This emphasis is largely due to reliance on measurement techniques to provide systolic readings only, as Doppler ultrasonography generally is used to obtain only systolic BP, particularly in cats, and recent evidence suggests that systolic BP is the more important determinant of hypertensive tissue damage in other species. However, isolated systolic and diastolic hypertension can and do occur in dogs and cats and when properly diagnosed, warrant classification and management, as outlined below. #### **Section 5: Target Organ Damage** Systemic hypertension is problematic only because chronically sustained increases in BP cause injury to tissues; the rationale for treatment of hypertension is the prevention of this injury. Damage that results from the presence of sustained high BP is commonly referred to as end-organ or target-organ damage (TOD; Table 5), and the presence of TOD is generally a strong indication for antihypertensive therapy. In the kidney, TOD is generally manifested as an enhanced rate of decrease in renal function, early renal death, and proteinuria or some combination of these findings. Furthermore, microalbuminuria is a marker of hypertensive TOD in the human heart and kidney, 93,94 and the severity of albuminuria has been directly related to the degree of increase in BP in an experimental study of chronic kidney disease (CKD) in cats. 19 Proteinuria has been directly related to the extent of increase in BP and to the rate of decrease in GFR in an experimental study in dogs. 95 The magnitude of proteinuria is a negative prognostic factor in spontaneous feline CKD. 96-98 Reduction of proteinuria is perhaps the most reliable evidence of benefit in an animal treated with antihypertensive agents, particularly in cats. With co- existent renal azotemia, TOD to the kidney is more likely to occur at systolic BP >160 mm Hg in dogs and cats, ^{17,78,95,99} although a linear relation may exist between hypertensive injury and BP in dogs with CKD. ⁹⁵ Hypertension may be present at any stage of CKD, and the serum creatinine concentration is not directly related to BP. ^{69,100} Hypertensive cats and dogs with CKD may have minimal or no azotemia. ¹⁰¹ Ocular lesions are observed in many cats with hypertension, and although prevalence rates for ocular injury vary, it has been reported to be as high as 100%.61,86,89,90,102-107 Ocular lesions also are common in hypertensive dogs. 85,86,99,108 This syndrome¹⁰⁹ is commonly termed hypertensive retinopathy or choroidopathy and has been frequently reported in dogs85,86,99 and cats. 9,89,90,104,105,110-112 Exudative retinal detachment is the most commonly observed finding. Other lesions include retinal hemorrhage, multifocal retinal edema, retinal vessel tortuosity, retinal perivascular edema, papilledema, vitreal hemorrhage, hyphema, secondary glaucoma, and retinal degeneration (late sequela). Acute onset of blindness from complete, bilateral exudative retinal detachment may be a presenting complaint in both species. 9,86,110 Effective antihypertensive treatment can lead to retinal reattachment but restoration of vision¹⁰⁷ generally occurs in only a minority⁸⁹ of patients. Hypertensive ocular injury has been reported at systolic BP values as low as 168 mm Hg, 106 and there is a substantially increased risk of occurrence when the systolic BP exceeds 180 mm Hg.86,102,110,111 Hypertensive encephalopathy¹¹³ has been reported in dogs⁹⁹ and cats, ^{9,28,89,114} and it occurs in people as a welldescribed entity that is characterized by white matter edema and vascular lesions. 115,116 Neurologic signs have been reported in 29%89 and 46% of hypertensive cats.9 Hypertensive encephalopathy also occurs after renal transplantation in people¹¹⁷ and is a cause of otherwise unexplained death in this setting in cats. 114,118,119 In its early phases, this syndrome is responsive to antihypertensive therapy. 19,114 Hypertensive encephalopathy is more likely to occur in cats with a sudden increase in BP, a systolic BP that exceeds 180 mm Hg, or both. 19,28 Observed clinical signs are typical of intracranial disease and include lethargy, seizures, acute onset of altered mentation, altered behavior, disorientation, balance disturbances (eg, vestibular signs, head tilt and nystagmus), and focal neurologic defects due to strokeassociated ischemia. Other central nervous system abnormalities, including hemorrhage and infarction, which accompany chronic hypertension in people, 120 are also observed in dogs and cats. Cardiac changes in hypertensive dogs include systolic murmurs, cardiac gallops, 85,121 and left ventricular hypertrophy. 121,122 Cardiac abnormalities are frequent, occurring in 4 out of 5 hypertensive cats. 89,90,102 When affected, the heart is a target organ and increased cardiac output rarely is the primary cause of hypertension in animals. 89 Clinical signs observed in affected cats include systolic murmur, gallop rhythm, 89,90,123 and cardiomegaly (generally left ventricular hypertrophy [LVH] but echocardiographic findings are vari- able).9,55,89,110,122,124 Although LVH may not be a risk factor for decreased survival time, 102 effective antihypertensive therapy may decrease the prevalence of LVH in affected cats. 125 Cardiac failure and other serious complications are infrequent but may occur. 9,89,126 Cats with previously undiagnosed hypertension may unexpectedly develop signs of congestive heart failure after receiving fluid therapy. Furthermore, cats with secondary hypertension due to other causes (eg, CKD) may die of cardiovascular complications, 90 as is frequently the case in hypertensive people. 127,128 Epistaxis, presumably due to hypertension-induced vascular abnormalities, has been associated with systemic hypertension. ## Section 6: Prevalence and Selection of
Patients for Hypertension Screening There are at least 2 clear indications for evaluating BP in a patient. First, BP should be measured in patients with clinical abnormalities consistent with hypertensive TOD (Table 5); the presence of otherwise unexplained clinical findings associated with systemic hypertension should lead to BP measurement at the time of diagnosis. These include signs of hypertensive choroidopathy or retinopathy, hyphema, intracranial neurologic signs (eg, seizures, altered mentation, and focal neurological deficits), renal abnormalities (eg., proteinuria, microalbuminuria, azotemia), and cardiovascular abnormalities (ie, LVH, gallop rhythm, arrhythmia, systolic murmur, and epistaxis). In the absence of these clinical findings, a high index of suspicion must be maintained to diagnose systemic hypertension in animals. Clinical signs evident to the owner or the veterinarian may be subtle and attributable to aging or underlying clinical conditions that may as yet be undiagnosed. In people, early signs of hypertension are subjective and include morning headaches, facial flushing, and feelings of anxiety. Such clinical signs are difficult to recognize in dogs and cats. In cats, some nonspecific clinical signs have been associated with hypertension in the laboratory setting, including inactivity, lethargy, light sensitivity with frequent blinking, and altered (increased or decreased) appetite (S. Brown, unpublished data, 2004). A second indication for the measurement of BP is the presence of diseases or conditions that are causally associated with secondary hypertension (Table 4), as well as those being treated with pharmacological agents that may increase BP (see Section 4). A thorough physical examination, including fuduscopic evaluation, cardiac auscultation, and neurologic examination, should be performed concurrently in these at-risk populations to assess TOD. Although the correlation between advancing age and prevalence of systemic hypertension is not as clear in animals as in humans, the conditions that cause secondary hypertension are more frequently observed in geriatric pets and it is prudent to screen routinely for the presence of these conditions (eg, CKD and hyperthyroidism). The prevalence of hypertension in dogs and cats is not well known. Surveys of apparently healthy dogs have identified hypertension in 0.5% of 400 dogs. 129 0.9% of **Table 6.** Classification of blood pressure (BP in mmHg) in dogs and cats based on risk for future target-organ damage (TOD)^{1,2,3} | Risk Category | Systolic BP | | Diastolic BP | Risk of future TOD | |---------------|-------------|------------------|--------------|--------------------| | I | <150 | and ³ | <95 | Minimal | | II | 150-159 | | 95–99 | Mild | | III | 160-179 | | 100-119 | Moderate | | IV | ≥180 | | ≥120 | Severe | ¹BP measurements should always be interpreted in light of the condition of the animal. Factors to consider include those that may alter cardiovascular control mechanisms (eg, excitement, anxiety, pharmacological agents) as well as those that may affect cardiovascular function directly (eg, dehydration, pharmacological agents). ²Breed, sex, and age variations should be considered in evaluating BP measurements. Known effects generally are small, except for the increased BP commonly observed in sighthounds (approximately 10–20 mm Hg). ³When reliable measurements (see text) lead to different categories based on separate consideration of the systolic and diastolic BP, the risk category of the patient should be taken as the higher risk. 1000 young dogs,¹³⁰ 2% of 215 dogs,¹³¹ and 10% of 102 dogs.³³ Others have provided evidence that dogs are resistant to the development of hypertension.^{42,100,132} The prevalence of hypertension may be comparable in cats. In one study of 104 apparently healthy cats, 2% had systolic BP >170 mm Hg.⁵⁹ However, as noted elsewhere in these guidelines, the lack of uniform measurement techniques, variable inclusion criteria, and inconsistent thresholds for establishing a diagnosis of hypertension in veterinary medicine make it difficult to interpret the prevalence data. Nonetheless, hypertension seems to be rare in young, otherwise healthy animals. Based on the available data, it is still unclear whether routine screening of healthy animals is a reliable method of detecting hypertension in the population, and the risk of false diagnosis is high with widespread screening. Furthermore, there is limited evidence to support the diagnosis and treatment of hypertension as an isolated problem. Therefore, the panel does not recommend routine screening of all dogs and cats for the presence of systemic hypertension. One approach, which is endorsed by some members of the panel, is to employ a screening program that achieves baseline values in animals by measuring BP at 2–3 years of age, again at 4–6 years of age, and a third time at 7-9 years of age, in order to develop reference values for that particular animal (not to identify hypertension). Some conditions (eg, hyperthyroidism, hyperadrenocorticism, and CKD) that cause secondary hypertension are more prevalent in older animals, yet they may be occult. Thus, it is reasonable to institute screening of cats and dogs that are ≥ 10 years of age. Still, high BP results in otherwise healthy, particularly young, animals should be assumed to reflect white-coat hypertension until proven otherwise. #### **Section 7: Diagnosis of Hypertension** A decision to use antihypertensive therapy should always be based on reliable measurements of BP. Diagnosis should rarely be established on the basis of a single measurement session. Multiple measurements, as well as a thorough search for TOD (Table 5) and conditions that may cause secondary hypertension (Table 4) should be considered before establishing a diagnosis. In patients with TOD consistent with **Fig 1.** The recommended approach to patient evaluation is based upon reliable measurements of blood pressure (BP). However, the identification and characterization of pre-existing target organ damage (TOD), the recognition of concurrent conditions (especially those causing secondary hypertension), and the categorization of risk for further TOD form the basis for treatment decisions. hypertension that may rapidly progress (eg, hypertensive retinopathy/choroidopathy or encephalopathy), a single measurement of BP can be used to establish temporarily a rationale for antihypertensive therapy. Although there are breed-related differences in BP in dogs, only the mean difference (10–20 mm Hg higher values for each category) for sighthounds mandates separate categorization at this time.^{42,71} Publication of data for specific breeds of dogs and cats may justify further modification of this recommendation in the future. We recommend the categorization of BP on the basis of risk of developing subsequent TOD (Table 6). In humans, any reduction of BP that does not produce overt hypotension lowers the risk of TOD. Admittedly, this latter finding remains to be confirmed in dogs and cats. #### Minimal Risk of TOD (BP <150195 mm Hg) BP below 150/95 mm Hg should be interpreted as representing minimal risk for TOD, and antihypertensive therapy is not recommended (Fig 1). This BP also represents the treatment goal for antihypertensive therapy. The panel uses the term minimal because certain predisposing causes (eg, CKD) can make an animal more susceptible to additional TOD (eg, progressive renal injury). Furthermore, there is a continuous relationship between BP and risk of TOD in people as BP increases above 120/80 mm Hg.^{2,3} However, comparable data relating risk to BP <150/95 mm Hg in dogs and cats are not available. The risk of TOD in these animals is in part related to the fact that minute-tominute variability of BP, inconsistency of BP measuring devices, technical errors, transient dehydration, negative white-coat effects or some combination of these factors could lead to a falsely low measurement of BP, and periodic re-evaluation should be employed in a patient with TOD and a BP <150/95 mm Hg. #### Mild Risk of TOD (BP 150-159195-99 mm Hg) Currently, there is a paucity of data to support intervention when the BP is <160/100 mm Hg, and we do not recommend routine antihypertensive therapy in this situation (Fig 1). Some surveys of normal dogs and cats have reported values within or near this range (Table 3). Furthermore, it is likely that some animals in this category are exhibiting white-coat hypertension. We do not know if the presence of white-coat hypertension is a risk factor for TOD in dogs and cats as it is in people⁷⁹ but we do not recommend treatment in the absence of knowledge in this regard. #### Moderate Risk of TOD (BP 160–1791 100–119 mm Hg) The rationale for the treatment of patients with this category of risk is to limit subsequent TOD, particularly in those animals with pre-existent TOD. Some changes, such as LVH¹²⁵ and hypertensive encephalopathy, ¹¹⁴ may partially or wholly resolve with therapy. Antihy- pertensive therapy may reduce the incidence or delay the development of other abnormalities, such as hypertensive encephalopathy or choroidopathy. 19,114,133 Antihypertensive therapy may slow disease progression in animals with CKD. 134,135 Most animals in this category, particularly those with TOD or secondary hypertension, are candidates for antihypertensive therapy (Fig 1). Other animals without TOD, particularly those with BP at the lower end of this range or those in which white-coat hypertension cannot be ruled out as the sole cause of the increased BP, generally will not be treated. The data remain incomplete for dogs and cats, and this decision requires the integration of all factors related to the patient and sound clinical judgment. #### Severe Risk of TOD (BP \geq 1801120 mm Hg) The rationale for treating patients with this category of risk is to limit the degree of TOD, for which the risk is high.
Although only extreme technical error or dramatic white-coat hypertension would be expected to produce such a large increase in BP in a normal dog or cat, we recommend at least 2 measurement sessions to confirm the degree of risk. The sole exception would be a patient in which a potentially rapidly progressive TOD, such as hypertensive choroidopathy or encephalopathy, is already present. Animals in this risk category are candidates for antihypertensive therapy (Fig 1) and appropriate, disease-specific management of any conditions that might be causing secondary hypertension. # Section 8: Management of the Hypertensive Patient ### The Hypertensive Patient: Evaluation and Decision to Treat The goals of this assessment (Fig 1) include recognizing conditions that may be contributing to increased BP, identifying and characterizing TOD, and determining if there are any seemingly unrelated concurrent conditions that may complicate antihypertensive therapy. Underlying diseases that may be causing secondary hypertension should be identified and treated while continuing to monitor BP. With the exception of advanced hypertensive choroidopathy or encephalopathy, antihypertensive therapy generally is not an emergency intervention (see "The Hypertensive Patient: Emergency Management" below). Since hypertension is often a silent, slowly progressive condition that requires vigilance and life-long therapy, it is important to be absolutely certain about the diagnosis; a high BP measurement may represent idiopathic, secondary or white-coat hypertension. A decision to treat (Fig 1) is made on the basis of categorization of risk (Table 6) for further TOD, characterization of concurrent conditions, and existing TOD. Appropriate management of selected patients may require referral, so as to utilize the complementary skills or second opinions of outside experts. The client should be educated thoroughly at the outset and involved in all decision-making processes. The client **Fig 2.** Management of hypertension involves a stepwise approach, including consideration of therapy for TOD and concurrent conditions, and staged institution of dietary and pharmacological regimens. Thorough patient evaluation, repeated BP measurements, and scheduled reassessment of treatment decisions are essential. At each evaluation, therapeutic intervention or escalation of therapy should be based on BP measurements and evidence of TOD. should understand what is meant by the term systemic hypertension, that treatment will often be lifelong and generally prevent adverse consequences rather than immediately improving the quality of life of their pet, that the disease is silent, and that control does not mean cure. The veterinarian should provide the client with blood pressure readings, a working knowledge of complications (of hypertension and the drugs used to manage it) and their identification, and a clear outline of the goals of treatment. The owner of a hypertensive pet should never leave the office without a clear plan for re-evaluation, preferably after scheduling the next appointment. #### Hypertensive Patient: Treatment As hypertension in dogs and cats is most often secondary (≥80% based on current data), antihypertensive drug therapy by itself is often not sufficient. Initial considerations (Fig 2) should always include the identification and management of conditions likely to be causing secondary hypertension and the identification and treatment of TOD. If possible, these considerations should be addressed with specific, targeted diagnostic and therapeutic regimens. Effective management of a condition that causes secondary hypertension will lead to complete or partial resolution of high BP in some, but not all, cases. 69,81,99 Decisions as to the use of antihypertensive drugs should be based on the integration of all clinically available information, and a decision to treat (which may effectively mandate lifelong drug therapy) warrants periodic, judicious re-evaluation. The therapy must be tailored to the patient and its concurrent conditions. Once-daily treatment is ideal; fewer treatments are always preferred. A gradual, persistent reduction of BP is the therapeutic goal. Generally, acute and severe decreases in BP should be avoided. If the antihypertensive agent of choice is only partially effective, the usual approach is to consider increasing the dosage or adding an additional drug. Although not ideal, management of highly resistant hypertension in people often requires 4 to 5 agents, and most veterinary patients with clinically relevant hypertension will require more than 1 agent. It is often helpful to discuss the variable nature of responses to antihypertensive medications with the owner when the first medication is prescribed. Although frequently recommended as an initial step in the pharmacological management of high BP (Fig 2), dietary salt restriction is controversial, 18,104,136 and the available evidence suggests that substantial sodium restriction alone generally does not reduce BP. 18,136,137 In fact, sodium restriction activates the renin-angiotensin-aldosterone axis18,85 and may actually increase BP in certain settings. 136,137 These effects may lead to progression of undesirable vascular, renal, and cardiac changes^{138–142} and necessitate utilization of antihypertensive agents that interfere with this hormonal system (eg, angiotensin-converting enzyme inhibitors [ACEI], angiotensin receptor blockers [ARB], and aldosterone receptor blockers). However, this approach is controversial, as high salt intake may produce adverse consequences in some settings, 143 particularly in animals with CKD.¹⁰⁴ Currently, there is no clear rationale for this approach and the panel recommends avoiding high dietary sodium chloride intake in hypertensive animals but does not recommend that a specific effort be made solely to restrict dietary sodium chloride intake. Until **Table 7.** Oral antihypertensive agents. | Class | Drug (Trade Names) | Usual Oral Dosage | |---|---|---| | Angiotensin-converting enzyme inhibitor | Benazepril (Lotensin, Fortekor) Enalapril (Vasotec, Enacard) | D: 0.5 mg/kg q12–24h
C: 0.5 mg/kg q12h
D: 0.5 mg/kg q12–24h | | | * | C: 0.5 mg/kg q24h | | Calcium channel blocker | Amlodipine (Norvasc) | D/C: 0.1-0.25 mg/kg q24h (up to 0.5 mg/kg in cats) | | α_1 blocker | Prazosin (Minipress) | D: 0.5–2 mg/kg q8–12h
C: 0.25–0.5 mg/cat q24h | | | Phenoxybenazime (Dibenzyline) | D: 0.25 mg/kg q8–12h or 0.5 mg/kg q24h
C: 2.5 mg per cat q8–12h or 0.5 mg/cat q24h | | | Acepromazine (PromAce) | D/C: 0.5–2 mg/kg q8h | | Direct vasodilator | Hydralazine (Apresoline) | D: 0.5–2 mg/kg q12h (start at low end of range)
C: 2.5 mg/cat q12-24h | | Aldosterone antagonist | Spironolactone (Aldactone) | D/C: 1.0–2.0 mg/kg q12h | | β Blocker | Propranolol (Inderal) | D: 0.2–1.0 mg/kg q8h (titrate to effect)
C: 2.5–5 mg/cat q8h | | | Atenolol (Tenormin) | D: 0.25–1.0 mg/kg q12h
C: 6.25–12.5 mg/cat q12h | | Thiazide diuretic | Hydrochlorothiazide (HydroDiuril) | D/C: 2–4 mg/kg q12-24h | | Loop diuretic | Furosemide (Lasix) | D/C: 1–4 mg/kg q 8-24h | D, dog; C, cat. more data are available, the selection of appropriate diet should be based on other patient-specific factors, such as underlying or concurrent diseases and palatability. Once a decision is made to treat an animal with high BP, therapeutic intervention will generally be carried out with a pharmacological agent. Furthermore, certain disease conditions may be best addressed with specific classes of agents, such as beta-blockers for hypertension associated with hyperthyroidism, alpha- and beta-blockers or surgical excision for pheochromocytomas, aldosterone receptor blockers or surgical excision of adrenal tumors in animals with hypertension associated with hyperaldosteronism, and some combination of ACEI, ARB, and aldosterone receptor blockers for hypertension associated with CKD in dogs. 19,134,135,144,145 ACEI and calcium channel blockers (CCB) are the most widely used antihypertensive agents in veterinary medicine. In dogs, ACEI are usually recommended as the initial agent of choice. Although there has been some concern regarding acute exacerbation of azotemia with these agents, this is an unusual complication of ACEI therapy. 97,146-148 Since ACEI preferentially dilate the efferent arteriole, they lower the intraglomerular pressure135,146 and frequently decrease the magnitude of proteinuria. 97,134,135,149 The magnitude of severity of proteinuria is a negative prognostic factor in feline CKD,96-98 and decreased proteinuria is associated with prolonged survival. Furthermore, the adverse cardiac and renal consequences of angiotensin II and aldosterone^{138–142} may be attenuated by this class of agent. However, a secondary consequence of efferent arteriolar dilatation is a theoretical tendency for the glomerular filtration rate (GFR) to decline. Single-nephron studies indicate that this is not necessarily the case in dogs¹³⁵ and cats.146 In dogs and cats with CKD that is not complicated by cardiovascular disease, the administration of ACEI commonly produces only very modest increases in serum creatinine concentration (<0.5 mg/ dL; <50 μmol/L) and this degree of change is usually tolerable. ACEI have been shown to have no adverse effects on renal function, based on serum creatinine concentrations, when administered chronically to older dogs with heart disease but not heart failure. 150 However, ACEI should not be used in dehydrated patients in which the GFR might drop precipitously. These patients should be carefully rehydrated and then re-evaluated before instituting antihypertensive therapy. Nonetheless, a BP <120/60 mm Hg combined with clinical findings of weakness, syncope, or
tachycardia indicate systemic hypotension and therapy should be adjusted accordingly (Fig 2). In cats, although the renin-angiotensin-aldosterone axis may play a role in the genesis or maintenance of systemic hypertension, 60,151-155 CCB are often the first choice for antihypertensive therapy due to established efficacy. 19,90,125,156,157 A mean decline in systolic BP of 40-55 mm Hg is typically observed in cats with moderate-tohigh risk of TOD.90,156,157 Despite significant antihypertensive efficacy, CCB have not been shown to increase survival time in treated cats90 and their use may activate the systemic or intrarenal renin-angiotensin system. A key predictive factor is the effect on proteinuria; a renoprotective effect is predicted if the antihypertensive regimen used decreases proteinuria. In this setting, the coadministration of ACEI and CCB is a possibility. 144,158,159 Combination therapy may be especially useful in cats, in which there is some evidence for a beneficial effect of ACEI in CKD97,149 and for an established antihypertensive efficacy of CCB. This approach is being evaluated¹⁶⁰ but is in need of further study. There are several other agents with BP-lowering efficacy (Table 7) and these may be used as appropriate in patients in which adequate risk reduction is not achieved with ACEI, CCB or a combination of these drugs (Fig 2). Although diuretics are frequently administered to hypertensive people, these agents are not first-choice drugs for veterinary patients with CKD, in which dehydration and volume depletion may prove problematic. However, diuretic and other classes of antihypertensive agents may prove useful in individual patients. Diuretics should be considered in hypertensive animals in which volume expansion is apparent (eg, those with edema). The goal of antihypertensive therapy is to decrease the magnitude, severity, and likelihood of TOD. Hypertension generally is not an emergency situation, and rapid reductions of BP usually should not be sought aggressively. Studies in people indicate that reduction of risk for TOD using antihypertensive therapy is a continuum and that the lower the BP, the lower the risk for TOD. Analysis of the results of a recent laboratory study in dogs95 suggests that BP is a continuous risk marker for progression of kidney disease, which may partly justify a similar approach in veterinary patients. The panel feels that regardless of the initial magnitude of BP, the goal of therapy should be to decrease maximally the risk of TOD (SBP <150 mm Hg and DBP <95 mm Hg), and that antihypertensive therapy should be adjusted on re-evaluation if the BP is ≥150/95 mm Hg or the systolic BP is too low (<120 mm Hg). Certainly, a minimal goal of therapy is to achieve a reduction in the category of risk for TOD (Table 6). #### The Hypertensive Patient: Follow-Up Follow-up evaluations should include measurements of BP, serum creatinine concentration, urinalysis, funduscopic examination, and other specific assessments depending on the individual circumstances (eg, TOD, causes of secondary hypertension, concurrent conditions). Since signs of progression to TOD can be subtle. BP should be closely monitored over time in patients receiving antihypertensive therapy, even when the hypertension is seemingly well-controlled. The frequency and nature of re-evaluations will vary depending on BP category, BP stability, other aspects of the health of the patient, and the frequency of dosage adjustment of the antihypertensive therapy. The assessment of any associated conditions or intercurrent diseases at intervals is dictated by standard management practices for those conditions. Animals with serious or rapidly progressive lesions (eg, ocular or neurological signs) constitute a special category, regardless of the magnitude of BP, and should be re-evaluated in 1-3 days. In other animals, we recommend re-evaluation 7-10 days after changes in therapy and at 1–4-month intervals depending on stability (more frequent if BP or other conditions are unstable) and the magnitude of the hypertension (more frequent if BP remains >180 mm Hg). Hospitalized patients, particularly those receiving fluid therapy or pharmacological agents with cardiovascular effects, should be assessed daily. For animals with TOD, organ-specific markers should be monitored. For example, proteinuria and microalbuminuria are adverse consequences of systemic hypertension in animals with coexistent CKD. With respect to the benefits of decreasing BP in animals with CKD, decreasing the magnitude of proteinuria is perhaps the most effective treatment goal, ¹⁶¹ particularly in cats. #### The Hypertensive Patient: Emergency Management The magnitude of increase in BP or TOD present may dictate that some patients require immediate and more aggressive attention. With acute onset of TOD that may be rapidly progressive (eg, severe hypertensive choroidopathy and encephalopathy), it is appropriate to consider treatment if the BP is ≥180/120 mm Hg (Severe Risk Category) for only 1 measurement session, although subsequent re-evaluations of the decision to treat the patient are mandated. Although the panel does not recommend that a patient with high BP but no TOD be treated as an emergency, it is prudent to institute therapy and re-evaluations rapidly in animals with severe risk for TOD. For emergency management, agents with a rapid onset of action are indicated. Appropriate agents include parenteral agents, such as hydralazine (0.2 mg/kg IV or IM, repeated q2h as needed), enalaprilat (0.2 mg/kg IV, repeated q1-2h as needed), labetolol (0.25 mg/kg IV over 2 minutes, repeated up to a total dose of 3.75 mg/ kg, followed by a constant rate infusion of 25 µg/kg/ min), and esmolol (50–75 µg/kg/min constant rate infusion), 162 as well as those with rapid onset of efficacy when administered orally (eg, amlodipine besylate at 0.1-0.25 mg/kg q24h; dosages up to 0.5 mg/kg q24h may be employed with caution). If parenteral medications are used, continuous BP monitoring by arterial catheterization is strongly recommended. Many clinicians prefer oral CCB, particularly in cats, as they generally decrease BP in severely hypertensive animals regardless of primary disease, and these agents have limited risk of causing hypotension. The BP and TOD should be assessed frequently (every 1–3 days) and the drug dosage or interdose interval adjusted accordingly. Once the BP or TOD is stabilized at an appropriate level, the patient should be managed on the basis of our other recommendations. These patients should be carefully re-evaluated before instituting chronic antihypertensive therapy. #### **Section 9: Conclusions** This panel recognizes that additional lines of evidence are required to advance this important area of veterinary medicine. We specifically call for large multicenter clinical studies to establish normal values based on breed, age, sex, and measurement technique. In addition, the proper clinical approach to the measurement of BP should be more precisely defined. For example, should we screen all dogs and cats over a certain age, measure BP only in animals with associated clinical signs or disease conditions, and make different recommendations for dogs and cats? Furthermore, the link between increased BP and adverse events, the magnitude of increase in BP for which intervention is warranted, and the benefits and adverse effects of various antihypertensive therapies should all be determined in future studies. At the ACVIM meeting in Dallas in 2002, our ACVIM Consensus Study Panel and an international group with interest in the field of veterinary hypertension (the International Blood Pressure Forum) formed the joint Veterinary Blood Pressure Society (VBPS). The members of VPBS have been involved in the preparation of these guidelines and it is anticipated that VPBS will revise and publish new BP guidelines as further advances are made in this field. #### References - 1. Valtonen MH, Eriksson LM. The effect of cuff width on accuracy of indirect measurement of blood pressure in dogs. Res Vet Sci 1970;11:358–362. - 2. Chobanian AV, Barkris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003;42:1206–1252. - 3. Zanchetti A, Cifkova R, Fagard S, et al. 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003;21:1011–1053. - 4. Sparkes AH, Caney SM, King MC, et al. Inter- and intraindividual variation in Doppler ultrasonic indirect blood pressure measurements in healthy cats. J Vet Intern Med 1999;13: 314–318. - 5. Gordon DB, Goldblatt H. Direct percutaneous determination of systemic blood pressure and production of renal hypertension in the cat. Proc Soc Exp Biol Med 1967;125:177–180. - Garner D, Laks MM. New implanted chronic catheter device for determining blood pressure and cardiac output in conscious dog. Am J Physiol 1985;249:H681–684. - 7. Geddes LA. The significance of a reference in the direct measurement of blood pressure. Med Instrum 1986;20:331–332. - 8. Scully P, Chan PS, Cervoni P, et al. A method of measuring direct arterial blood pressure. Canine Practice 1983;10:24–33. - 9. Littman MP. Spontaneous systemic hypertension in 24 cats. J Vet Intern Med 1994;8:79–86. - 10. Brooks D, Horner RL, Kozar LF, et al. Validation of a telemetry system for long-term measurement of blood pressure. J Appl Physiol 1996;81:1012–1018. - 11. Bodey AR, Michell AR, Bovee KC, et al. Comparison of direct and indirect (oscillometric) measurements of arterial blood pressure in conscious dogs. Res Vet Sci 1996;61:17–21. - 12. Mishina M, Watanabe T, Matsuoka S, et al. Diurnal variations of blood pressure in dogs. J Vet Med Sci 1999;61: 643–647. - 13. Truett AA, West DB. Validation of a radiotelemetry system for continuous blood pressure and heart rate monitoring in dogs. Lab Anim
Sci 1995;45:299–302. - 14. Brown SA, Langford K, Tarver S. Effects of certain vasoactive agents on the long-term pattern of blood pressure, heart rate, and motor activity in cats. Am J Vet Res 1997;58: 647–652. - 15. Miller RH, Smeak DD, Lehmkuhl LB, et al. Radiotelemetry catheter implantation: Surgical technique and results in cats. Contemp Top Lab Anim Sci 2000;39:34–39. - 16. Belew AM, Barlett T, Brown SA. Evaluation of the white-coat effect in cats. J Vet Intern Med 1999;13:134–142. - 17. Mathur S, Brown CA, Dietrich UM, et al. Evaluation of a technique of inducing hypertensive renal insufficiency in cats. Am J Vet Res 2004;65:1006–1013. - 18. Buranakarl C, Mathur S, Brown SA. Effects of dietary sodium chloride intake on renal function and blood pressure in cats with normal and reduced renal function. Am J Vet Res 2004;65: 620–627. - 19. Mathur S, Syme H, Brown CA, et al. Effects of the calcium channel antagonist amlodipine in cats with surgically induced hypertensive renal insufficiency. Am J Vet Res 2002;63:833–839. - 20. Wessale JL, Smith LA, Reid M, et al. Indirect auscultatory systolic and diastolic pressures in the anesthetized dog. Am J Vet Res 1985;46:2129–2132. - 21. Egner B. Blood pressure measurement. In: Egner B, Carr A, Brown S, eds. Essential Facts of Blood Pressure in Dogs and Cats. Babenhausen, Germany: Vet Verlag; 2003:1–14. - 22. Brown SA, Haberman C, Morgan J. Evaluation of Doppler ultrasonographic and oscillometric estimates of blood pressure in cats. J Vet Int Med 2001;15:281 (abstract). - 23. Brown SA, Haberman C, Morgan J. Evaluation of Doppler ultrasonographic and oscillometric estimates of blood pressure in conscious dogs. J Vet Int Med 2001;15:307 (abstract). - 24. Grandy JL, Dunlop CI, Hodgson DS, et al. Evaluation of the Doppler ultrasonic method of measuring systolic arterial blood pressure in cats. Am J Vet Res 1992;53:1166–1169. - 25. Branson KR, Wagner-Mann CC, Mann FA. Evaluation of an oscillometric blood pressure monitor on anesthetized cats and the effect of cuff placement and fur on accuracy. Vet Surg 1997;26: 347–353. - 26. Bodey AR, Michell AR. Longitudinal studies of reproducibility and variability of indirect (oscillometric) blood pressure measurements in dogs: Evidence for tracking. Res Vet Sci 1997;63:15–21. - 27. Caulkett NA, Cantwell SL, Houston DM. A comparison of indirect blood pressure monitoring techniques in the anesthetized cat. Vet Surg 1998;27:370–377. - 28. Brown CA, Munday J, Mathur S, Brown SA. Hypertensive encephalopathy in cats with reduced renal function. Vet Pathol. 2005;42:642–649. - 29. Pettersen JC, Linartz RR, Hamlin RL, et al. Noninvasive measurement of systemic arterial blood pressure in the conscious beagle dog. Fundamental and Applied Toxicology 1988;10:89–97. - 30. Tabaru H, Watanabe H, Tanaka M, et al. Non-invasive measurement of systemic arterial pressure by finapres in anesthetized dogs. Jpn J Vet Sci 1990;52:427–430. - 31. Harvey J, Falsetti H, Cooper P, et al. Auscultatory indirect measurement of blood pressure in dogs. Laboratory Animal Science 1983;33:370–372. - 32. Vincent IC, Michell AR, Leahy RA. Non-invasive measurement of arterial blood pressure in dogs: A potential indicator for the identification of stress. Res Vet Sci 1993;54:195–201. - 33. Remillard RL, Ross JN, Eddy JB. Variance of indirect blood pressure measurements and prevalence of hypertension in clinically normal dogs. Am J Vet Res 1991;52:561–565. - 34. Hamlin RL, Kittleson MD, Rice D, et al. Noninvasive measurement of systemic arterial pressure in dogs by automatic sphygmomanometry. Am J Vet Res 1982;43:1271–1273. - 35. Stepien RL, Rapoport GS, Henik RA, et al. Comparative diagnostic test characteristics of oscillometric and Doppler ultrasonographic methods in the detection of systolic hypertension in dogs. J Vet Intern Med 2003;17:65–72. - 36. Kittleson MD, Olivier NB. Measurement of systemic arterial blood pressure. Vet Clin North Am Small Anim Pract 1983;13:321–336. 37. Weiser MG, Spangler WL, Gribble DH. Blood pressure measurement in the dog. J Am Vet Med Assoc 1977;171:364–368. - 38. Garner HE, Hahn AW, Hartley JW, et al. Indirect blood pressure measurement in the dog. Lab Anim Sci 1975;25:197–202. - 39. Mishina M, Watanabe T, Fujii K, et al. A clinical evaluation of blood pressure through non-invasive measurement using the oscillometric procedure in conscious dogs. J Vet Med Sci 1997;59:989–993. - 40. Geddes LA, Combs W, Denton W, et al. Indirect mean arterial pressure in the anesthetized dog. Am J Physiol 1980;238: H664–H666. - 41. Meurs KM, Miller MW, Slater MR, et al. Arterial blood pressure measurement in a population of healthy geriatric dogs. J Am Anim Hosp Assoc 2000;36:497–500. - 42. Bodey AR, Michell AR. Epidemiological study of blood pressure in domestic dogs. J Small Anim Pract 1996;37:116–125. - 43. Coulter DB, Keith JC Jr. Blood pressures obtained by indirect measurement in conscious dogs. J Am Vet Med Assoc 1984;184:1375–1378. - 44. Kallet AJ, Cowgill LD, Kass PH. Comparison of blood pressure measurements obtained in dogs by use of indirect oscillometry in a veterinary clinic versus at home. J Am Vet Med Assoc 1997;210:651–654. - 45. Vincent IC, Michell AR. Relationship between blood pressure and stress-prone temperament in dogs. Physiol Behav 1996;60:135–138. - 46. Gains MJ, Grodecki KM, Jacobs RM, et al. Comparison of direct and indirect blood pressure measurements in anesthetized dogs. Can J Vet Res 1995;59:238–240. - 47. Sawyer DC, Brown M, Striler EL, et al. Comparison of direct and indirect blood pressure measurement in anesthetized dogs. Lab Anim Sci 1991;41:134–138. - 48. Meurs KM, Miller MW, Slater MR. Comparison of the indirect oscillometric and direct arterial methods for blood pressure measurements in anesthetized dogs. J Am Anim Hosp Assoc 1996;32:471–475. - 49. Bodey AR, Young LE, Bartram DH, et al. A comparison of direct and indirect (oscillometric) measurements of arterial blood pressure in anaesthetised dogs, using tail and limb cuffs. Res Vet Sci 1994;57:265–269. - 50. Bright JM, Dentino M. Indirect arterial blood pressure measurement in nonsedated Irish wolfhounds: Reference values for the breed. J Am Anim Hosp Assoc 2002;38:521–526. - 51. Hunter JS Jr, McGrath CJ, Thatcher CD, et al. Adaptation of human oscillometric blood pressure monitors for use in dogs. Am J Vet Res 1990;51:1439–1442. - 52. Sawyer DC, Guikema AH, Siegel EM. Evaluation of a new oscillometric blood pressure monitor in isoflurane-anesthetized dogs. Vet Anaesth Analg 2004;31:27–39. - 53. Haberman CE, Morgan JD, Kang CW, Brown S. Evaluation of Doppler ultrasonic and oscillometric methods of indirect blood pressure measurement in cats. J Appl Res Vet Med 2004:2:279–289. - 54. Haberman CE, Kang CW, Morgan JD, Brown S. Evaluation of oscillometric and Doppler ultrasonic methods of indirect blood pressure estimation in conscious dogs. Can J Vet Res 2006;70:211–217. - 55. Sennello KA, Schulman RL, Prosek R, et al. Systolic blood pressure in cats with diabetes mellitus. J Am Vet Med Assoc 2003;223:198–201. - 56. Pedersen KM, Butler MA, Ersboll AK, et al. Evaluation of an oscillometric blood pressure monitor for use in anesthetized cats. J Am Vet Med Assoc 2002;221:646–650. - 57. Binns SH, Sisson DD, Buoscio DA, et al. Doppler ultrasonographic, oscillometric sphygmomanometric, and photoplethysmographic techniques for noninvasive blood pressure - measurement in anesthetized cats. J Vet Intern Med 1995;9: 405-414. - 58. Klevans LR, Hirkaler G, Kovacs JL. Indirect blood pressure determination by Doppler technique in renal hypertensive cats. Am J Physiol 1979;237:H720–H723. - 59. Bodey AR, Sansom J. Epidemiological study of blood pressure in domestic cats. J Small Anim Pract 1998;39:567–573. - 60. Mishina M, Watanabe T, Fujii K, et al. Non-invasive blood pressure measurements in cats: Clinical significance of hypertension associated with chronic renal failure. J Vet Med Sci 1998;60: - 61. van de Sandt RR, Stades FC, Boeve MH, et al. [Arterial hypertension in the cat. A pathobiologic and clinical review with emphasis on the ophthalmologic aspects]. Tijdschr Diergeneeskd 2003;128:2–10. - 62. McLeish I. Doppler ultrasonic arterial pressure measurement in the cat. Vet Rec 1977;100:290-291. - 63. Gosenbaugh DA, Muir WW. Accuracy of noninvasive oxyhemoglobin saturation, end-tidal carbon dioxide concentration, and blood pressure monitoring during experimentally induced hypoxemia, hypotension, or hypertension in anesthetized dogs. Am J Vet Res 1998;59:205–212. - 64. Stepien RL, Rapoport GS. Clinical comparison of three methods to measure blood pressure in nonsedated dogs. J Am Vet Med Assoc 1999;215:1623–1628. - 65. Sander C, Horauf A, Reusch C. [Indirect blood pressure measurement in cats with diabetes mellitus, chronic nephropathy and hypertrophic cardiomyopathy]. Tierarztl Prax Ausg K Klientiere Heimtiere 1998;26:110–118. - 66. Berson AS, Robbins CB. Nonautomated Sphygmomanometers: American National Standards Institute. 1994. - 67. Prisant LM, Alpert BS, Robbins CB, et al. American National Standard for nonautomated sphygmomanometers. Summary report. Am J Hypertens 1995;8:210–213. - 68. Safar M. Ageing and its effects on the cardiovascular system. Drugs 1990;39(Suppl 1):1-8. - 69. Kobayashi DL, Peterson ME, Graves TK, et al. Hypertension in cats with chronic renal failure or hyperthyroidism. J Vet Intern Med 1990;4:58–62. - 70. Schneider HP, Truex RC, Knowles JO. Comparative observations of the hearts of mongrel and greyhound dogs. Anat Rec 1964;149:173–179. - 71. Cox RH, Peterson LH, Detweiler DK. Comparison of arterial hemodynamics in the mongrel dog and the racing greyhound. Am J Physiol 1976;230:211–218. - 72. Joles JA. Obesity in dogs: Effects on renal function, blood pressure, and renal disease. Vet Q 1998;20:117–120. - 73. Rocchini AP, Yang JQ, Gokee A. Hypertension and insulin resistance are not directly related in obese dogs. Hypertension 2004;43:1011–1016. - 74.
Davy KP, Hall JE. Obesity and hypertension: Two epidemics or one? Am J Physiol Regul Integr Comp Physiol 2004; 286:R803–R813. - 75. Dwyer TM, Banks SA, Alonso-Galicia M, et al. Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int 2000;58:721–729. - 76. Alonso-Galicia M, Brands MW, Zappe DH, et al. Hypertension in obese Zucker rats. Role of angiotensin II and adrenergic activity. Hypertension 1996;28:1047–1054. - 77. Montoya JA, Morrios PJ, Bautista I, et al. Hypertension: A risk factor associated with weight status in dogs. J Nutr 2006;136: 2011S–S2013. - 78. Brown SA, Brown CA, Hendi R. Does systemic hypertension damage the canine kidney? J Vet Intern Med 2000;14:351A. - 79. Karter Y, Curgunlu A, Altinisik S, et al. Target organ damage and changes in arterial compliance in white coat hypertension. Is white coat innocent? Blood Press 2003;12:307–313. - 80. Goy-Thollot I, Pechereau D, Keroack S, et al. Investigation of the role of aldosterone in hypertension associated with spontaneous pituitary-dependent hyperadrenocorticism in dogs. J Small Anim Pract 2002;43:489–492. - 81. Ortega TM, Feldman EC, Nelson RW, et al. Systemic arterial blood pressure and urine protein/creatinine ratio in dogs with hyperadrenocorticism. J Am Vet Med Assoc 1996;209: 1724–1729. - 82. Syme HM, Elliott J. Prevalence of hypertension in hyperthyroid cats at diagnosis and following treatment. J Vet Int Med 2003;17:754A. - 83. Syme HM, Elliott J. ECVIM. ECVIM 2003. - 84. Bovee KC, Littman MP, Saleh F, et al. Essential hereditary hypertension in dogs: A new animal model. J Hypertens Suppl 1986;4:S172–S171. - 85. Bovee KC, Littman MP, Crabtree BJ, et al. Essential hypertension in a dog. J Am Vet Med Assoc 1989;195:81–86. - 86. Littman MP, Robertson JL, Bovee KC. Spontaneous systemic hypertension in dogs: Five cases (1981-1983). J Am Vet Med Assoc 1988;193:486–494. - 87. Slaughter JB 2nd, Padgett GA, Blanchard G, et al. Canine essential hypertension: Probable mode of inheritance. J Hypertens Suppl 1986;4:S170–S171. - 88. Tippett FE, Padgett GA, Eyster G, et al. Primary hypertension in a colony of dogs. Hypertension 1987;9:49–58. - 89. Maggio F, DeFrancesco TC, Atkins CE, et al. Ocular lesions associated with systemic hypertension in cats: 69 cases (1985-1998). J Am Vet Med Assoc 2000;217:695–702. - 90. Elliott J, Barber PJ, Syme HM, et al. Feline hypertension: Clinical findings and response to antihypertensive treatment in 30 cases. J Small Anim Pract 2001;42:122–129. - 91. Mancia G, Parati G, Hennig M, et al. Relation between blood pressure variability and carotid artery damage in hypertension: Baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens 2001;19:1981–1989. - 92. Mentari E, Rahman M. Blood pressure and progression of chronic kidney disease: Importance of systolic, diastolic, or diurnal variation. Curr Hypertens Rep 2004;6:400–404. - 93. Bakris GL. Microalbuminuria: What is it? Why is it important? What should be done about it? J Clin Hypertens (Greenwich) 2001;3:99–102. - 94. Palatini P. Microalbuminuria in hypertension. Curr Hypertens Rep 2003;5:208–214. - 95. Finco DR. Association of systemic hypertension with renal injury in dogs with induced renal failure. J Vet Int Med 2004;18:289–294. - 96. Syme HM, Markwell PJ, Pfeiffer D, et al. Survival of cats with naturally occurring chronic renal failure is related to severity of proteinuria. J Vet Int Med 2006;20:528–535. - 97. King JN, Gunn-Moore DA, Tasker S, et al. Tolerability and efficacy of benazepril in cats with chronic kidney disease. J Vet Int Med 2006;20:1054–1064. - 98. Elliott J, Syme HM. Proteinuria in chronic kidney disease in cats: Prognostic marker or therapeutic target? J Vet Int Med 2006;20:1052–1053. - 99. Jacob F, Polzin DJ, Osborne CA, et al. Association between initial systolic blood pressure and risk of developing a uremic crisis or of dying in dogs with chronic renal failure. J Am Vet Med Assoc 2003;222:322–329. - 100. Michell AR, Bodey AR, Gleadhill A. Absence of hypertension in dogs with renal insufficiency. Ren Fail 1997;19:61–68. - 101. Cortadellas O, del Palacio MJ, Bayon A, et al. Systemic hypertension in dogs with leishmaniasis: Prevalence and clinical consequences. J Vet Int Med 2006;20:941–947. - 102. Chetboul V, Lefebvre HP, Pinhas C, et al. Spontaneous feline hypertension: Clinical and echocardiographic abnormalities, and survival rate. J Vet Intern Med 2003;17:89–95. - 103. Van Boxtel SA. Hypertensive retinopathy in a cat. Can Vet J 2003;44:147–149. - 104. Turner JL, Brogdon JD, Lees GE, et al. Idiopathic hypertension in a cat with secondary hypertensive retinopathy associated with a high-salt diet. J Am Anim Hosp Assoc 1990;26: 647–651. - 105. Stiles J, Polzin DJ, Bistner SI. The prevalence of retinopathy in cats with systemic hypertension and chronic renal failure or hyperthyroidism. J Am Anim Hosp Assoc 1994;30: 564–572. - 106. Sansom J, Rogers K, Wood JL. Blood pressure assessment in healthy cats and cats with hypertensive retinopathy. Am J Vet Res 2004;65:245–252. - 107. Komaromy AM, Andrew SE, Denis HM, et al. Hypertensive retinopathy and choroidopathy in a cat. Vet Ophthalmol 2004;7:3–9. - 108. Sansom J, Bodey A. Ocular signs in four dogs with hypertension. Vet Rec 1997;140:593–598. - 109. Crispin SM, Mould JR. Systemic hypertensive disease and the feline fundus. Vet Ophthalmol 2001;4:131–140. - 110. Morgan RV. Systemic hypertension in four cats: Ocular and medical findings. J Am Anim Hosp Assoc 1986;22:615-621. - 111. Sansom J, Barnett K, Dunn K, et al. Ocular disease associated with hypertension in 16 cats. J Small Anim Pract 1994; 35:604–611. - 112. Henik RA. Diagnosis and treatment of feline systemic hypertension. Compendium 1997;19:163–178. - 113. Bagley RS. The brain as a target organ In: Egner B, Carr A, Brown S, eds. Essential Facts of Blood Pressure in Dogs and Cats. Babenhausen, Germany: Vet Verlag; 2003:129–139. - 114. Kyles AE, Gregory CR, Wooldridge JD, et al. Management of hypertension controls postoperative neurologic disorders after renal transplantation in cats. Vet Surg 1999;28:436–441 - 115. Kletzmayr J, Uffmann M, Schmaldienst S. Severe but reversible hypertensive encephalopathy. Wien Klin Wochenschr 2003:115:416 - 116. Schwartz RB. Hyperperfusion encephalopathies: Hypertensive encephalopathy and related conditions. Neurologist 2002;8: 22–34. - 117. Tejani A. Post-transplant hypertension and hypertensive encephalopathy in renal allograft recipients. Nephron 1983;34:73–78. - 118. Mathews KG, Gregory CR. Renal transplants in cats: 66 cases (1987-1996). J Am Vet Med Assoc 1997;211:1432–1436. - 119. Gregory CR, Mathews KG, Aronson LR, et al. Central nervous system disorders after renal transplantation in cats. Vet Surg 1997;26:386–392. - 120. Manolio TA, Olson J, Longstreth WT. Hypertension and cognitive function: Pathophysiologic effects of hypertension on the brain. Curr Hypertens Rep 2003;5:255–261. - 121. Littman MP, Drobatz KJ. Hypertensive and hypotensive disorders In: Ettinger SJ, ed. Textbook of Veterinary Internal Medicine. Philadelphia: WB Saunders; 1995:93–100. - 122. Lesser M, Fox PR, Bond BR. Assessment of hypertension in 40 cats with left ventricular hypertrophy by Doppler-shift sphygmomanometry. J Sm Anim Prac 1992;33:55–58. - 123. Henik RA. Systemic hypertension and its management. Vet Clin North Am Small Anim Pract 1997;27:1355–1372. - 124. Henik RA, Stepien RL, Bortnowski HB. Spectrum of m-mode echocardiographic abnormalities in 75 cats with systemic hypertension. J Am Anim Hosp Assoc 2004;40:359–363. - 125. Snyder PS, Sadek D, Jones GL. Effect of amlodipine on echocardiographic variables in cats with systemic hypertension. J Vet Intern Med 2001;15:52–56. - 126. Wey AC, Atkins CE. Aortic dissection and congestive heart failure associated with systemic hypertension in a cat. J Vet Intern Med 2000;14:208–213. 127. Collins AJ, Li S, Gilbertson DT, et al. Chronic kidney disease and cardiovascular disease in the Medicare population. Kidney Int Suppl 2003;S24–S31. - 128. Zannad F, Kessler M, Lehert P, et al. Prevention of cardiovascular events in end-stage renal disease: Results of a randomized trial of fosinopril and implications for future studies. Kidney Int 2006;70:1318–1324. - 129. McCubbin JW, Corcoran AC. Arterial pressures in street dogs: Incidence and significance of hypertension. Proc Soc Exp Biol Med 1953;84:130–131. - 130. Katz JI, Skom JH, Walkerlin GE. Pathogenesis of spontaneous and pyelonephritic hypertension in the dog. Circ Res 1954;5:137–143. - 131. Hamilton WF, Pund ER, Slaughter RF, et al. Blood pressure values in street dogs. Am J Physiol 1940;128:233–237. - 132. Michell AR. Salt, hypertension and renal disease: Comparative medicine, models and real diseases. Postgrad Med J 1994;70:686–694. - 133. Gregory CR, Mathews KG, Aronson LR, et al. Central nervous system disorders after renal transplantation in cats. Vet Surg 1997;26:386–392. - 134. Grauer G, Greco D, Gretzy D, et al. Effects of enalapril treatment versus placebo as a treatment for canine idiopathic glomerulonephritis. J Vet Intern Med 2000;14:526–533. - 135. Brown SA, Finco DR, Brown CA, et al. Evaluation of the effects of inhibition of angiotensin converting enzyme with enalapril in dogs with induced chronic renal insufficiency. Am J Vet Res 2003;64:321–327. - 136. Greco DS, Lees GE, Dzendzel G, et al. Effects of dietary sodium intake on blood pressure measurements in partially nephrectomized dogs. Am J Vet Res 1994;55:160–165. - 137. Hansen B, DiBartola SP, Chew DJ, et al. Clinical and metabolic findings in dogs with chronic renal failure fed two diets. Am J Vet Res 1992;53:326–334. - 138. Brewster UC, Setaro JF, Perazella MA. The Renin-Angiotensin-aldosterone system: Cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 2003;326:15–24. - 139. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced
hypertension and glomerular hyperfiltration. Hypertension 2004;43:41–47. - 140. Panos J, Michelis MF, DeVita MV, et al. Combined converting enzyme inhibition and angiotensin receptor blockade reduce proteinuria greater than converting enzyme inhibition alone: Insights into mechanism. Clin Nephrol 2003;60:13–21. - 141. Weir MR, Dzau VJ. The renin-angiotensin-aldosterone system: A specific target for hypertension management. Am J Hypertens 1999;12:205S–213S. - 142. Zhou X, Ono H, Ono Y, et al. Aldosterone antagonism ameliorates proteinuria and nephrosclerosis independent of glomerular dynamics in L-NAME/SHR model. Am J Nephrol 2004;24:242–249. - 143. Allen TJ, Waldron MJ, Casley D, et al. Salt restriction reduces hyperfiltration, renal enlargement, and albminuria in experimental diabetes. Diabetes 1997;46:119–124. - 144. Brown SA, Walton CL, Crawford P, et al. Long-term effects of antihypertensive regimens on renal hemodynamics and proteinuria. Kidney Int 1993;43:1210–1218. - 145. Gaber L, Walton C, Brown S, et al. Effects of different antihypertensive treatments on morphologic progression of diabetic nephropathy in uninephrectomized dogs. Kidney Int 1994; 46:161–169. - 146. Brown SA, Brown CA, Jacobs G, et al. Effects of the angiotensin converting enzyme inhibitor benazepril in cats with induced renal insufficiency. Am J Vet Res 2001;62:375–383. - 147. COVE Study Group, Controlled clinical evaluation of enalapril in dogs with heart failure: Results of the Cooperative - Veterinary Enalapril Study Group. J Vet Intern Med 1995;9: 243–252. - 148. Ettinger SJ, Benitz AM, Ericsson GF, et al. Effects of enalapril maleate on survival of dogs with naturally acquired heart failure. The Long-Term Investigation of Veterinary Enalapril (LIVE) Study Group. J Am Vet Med Assoc 1998;213:1573–1577. - 149. Mizutani H, Koyama H, Watanabe T, et al. Evaluation of the clinical efficacy of benazepril in the treatment of chronic renal insufficiency in cats. J Vet Int Med 2006;20:1074–1079. - 150. Atkins CE, Brown WA, Coats JR, et al. Effects of long-term administration of enalapril on clinical indicators of renal function in dogs with compensated mitral regurgitation. J Am Vet Med Assoc 2002;221:654–658. - 151. Taugner F, Baatz G, Nobiling R. The renin-angiotensin system in cats with chronic renal failure. J Comp Pathol 1996;115: 239–252. - 152. Steele JL, Henik RA, Stepien RL. Effects of angiotensin-converting enzyme inhibition on plasma aldosterone concentration, plasma renin activity, and blood pressure in spontaneously hypertensive cats with chronic renal disease. Veterinary Therapeutics 2002;3:157–166. - 153. Jensen J, Henik RA, Brownfield M, et al. Plasma renin activity and angiotensin I and aldosterone concentrations in cats with hypertension associated with chronic renal disease. Am J Vet Res 1997;58:535–540. - 154. Miller RH, Lehmkuhl LB, Smeak DD, et al. Effect of enalapril on blood pressure, renal function, and the reninangiotensin-aldosterone system in cats with autosomal dominant polycystic kidney disease. Am J Vet Res 1999;60:1516–1525. - 155. Pedersen KM, Pedersen HD, Haggstrom J, et al. Increased mean arterial pressure and aldosterone-to-renin ratio in Persian cats with polycystic kidney disease. J Vet Intern Med 2003;17:21–27. - 156. Henik RA, Snyder PS, Volk LM. Treatment of systemic hypertension in cats with amlodipine besylate. J Am Anim Hosp Assoc 1997;33:226–234. - 157. Snyder PS. Amlodipine: A randomized, blinded clinical trial in 9 cats with systemic hypertension. J Vet Intern Med 1998; 12:157–162. - 158. Brown S. The kidney as a target organ In: Egner B, Carr A, Brown S, eds. Essential Facts of Blood Pressure in Dogs and Cats. Babenhausen, Germany: Vet Verlag; 2003:121–128. - 159. Nosadini R, Tonolo G. Cardiovascular and renal protection in type 2 diabetes mellitus: The role of calcium channel blockers. J Am Soc Nephrol 2002;13(Suppl 3):S216–S223. - 160. Elliott J, Fletcher MG, Souttar K, et al. Effect of concomitant amlodipine and benazepril therapy in the management of feline hypertension. 14th ECVIM-CA Congress, Barcelona, Spain, 2004. - 161. Chua DC, Bakris GL. Is proteinuria a plausible target of therapy? Curr Hypertens Rep 2004;6:177–181. - 162. Day TK, Muir WW. Alpha 2-adrenergic receptor agonist effects on supraventricular and ventricular automaticity in dogs with complete atrioventricular block. Am J Vet Res 1993;54:136–141. - 163. Anderson LJ, Fisher EW. The blood pressure in canine interstitial nephritis. Res Vet Sci 1968;9:304–313. - 164. Cowgill LD, Kallet AJ. Recognition and management of hypertension in the dog. In: Kirk RW, ed. Curent Veterinary Therapy VIII. Philadelphia, PA: WB Saunders; 1983:1025–1028. - 165. Chalifoux A, Dallaire A, Blais D, et al. Evaluation of the arterial blood pressure of dogs by two noninvasive methods. Can J Comp Med 1985;49:419–423. - 166. Brown S, Langford K, Tarver S. Effects of pharmacological agents on diurnal pattern of blood pressure, heart rate, and motor activity in cats. Am J Vet Res 1997;58:647–652. - 167. Lin CH, Yan CJ, Lien YH, et al. Systolic blood pressure of clinically normal and conscious cats determined by an indirect Doppler method in a clinical setting. J Vet Med Sci 2006;68:827–832. - 168. Rapoport GS, Stepien RL. Direct arterial blood pressure measurement in 54 dogs presented for systemic hypertension screening 1998-2001. 11th European College of Veterinary Internal Medicine Annual Congress 2001:62. - 169. Buranakarl C, Ankanaporn K, Thammacharoen S, et al. Relationships between degree of azotaemia and blood pressure, urinary protein:creatinine ratio and fractional excretion of electrolytes in dogs with renal azotaemia. Vet Res Commun 2006. In press. - 170. Francey T, Cowgill LD. Hypertension in dogs with severe acute renal failure. J Vet Int Med 2004;18:418(A). - 171. Struble AL, Feldman EC, Nelson RW, et al. Systemic hypertension and proteinuria in dogs with diabetes mellitus. J Am Vet Med Assoc 1998;213:822–825. - 172. Breitschwerdt EB, Meuten DJ, Greenfield CL. Idiopathic hyperaldosteronism in a dog. J Am Vet Med Assoc 1985;187: 841–845. - 173. Barthez PY, Marks SL, Woo J, et al. Pheochromocytoma in dogs: 61 cases (1984-1995). J Vet Intern Med 1997;11:272–278. - 174. Gilson SD, Withrow SJ, Wheeler SL, et al. Pheochromocytoma in 50 dogs. J Vet Intern Med 1994;8:228–232. - 175. Gwin RM, Gelatt KN, Terrell TG, et al. Hypertensive retinopathy associated with hypothyroidism, hypercholesterolemia, and renal failure in a dog. J Am Anim Hosp Assoc 1978;14:200–209. - 176. Syme HM, Barber PJ, Markwell PJ, et al. Prevalence of systolic hypertension in cats with chronic renal failure at initial evaluation. J Am Vet Med Assoc 2002;220:1799–1804. - 177. Flood SM, Randolph JF, Gelzer AR, et al. Primary hyperaldosteronism in two cats. J Am Anim Hosp Assoc 1999;35: 411–416. - 178. MacKay AD, Holt PE, Sparkes AH. Successful surgical treatment of a cat with primary aldosteronism. J Feline Med Surg 1999;1:117–122. - 179. Ahn A. Hyperaldosteronism in cats. Semin Vet Med Surg (Small Anim) 1994;9:153–157. - 180. Rijnberk A, Voorhout G, Kooistra HS, et al. Hyperaldosteronism in a cat with metastasised adrenocortical tumour. Vet Q 2001;23:38–43. - 181. Eger CE, Robinson WF, Hustable CRR. Primary aldosteronism (Conn's syndrome) in a cat. J Sm Anim Pract 1983; 24:293–307. - 182. Javadi S, Djajadiningrat-Laanen SC, Kooistra HS, et al. Primary hyperaldosteronism, a mediator of progressive renal disease in cats. Domest Anim Endocrinol 2005;28:85–104 - 183. Ash RA, Harvey AM, Tasker S. Primary hyperaldosteronism in the cat: A series of 13 cases. J Feline Med Surg 2005;7: 173–182 - 184. Henry CJ, Brewer WG, Montgomery RD. Adrenal pheochromocytoma in a cat. J Vet Int Med 1993;7:199–203. - 185. Maher ER Jr, McNiel EA. Pheochromocytoma in dogs and cats. Vet Clin North Am Small Anim Pract 1997;27: 359–380. #### **Appendix** Validation of BP Measurement Devices according to ACVIM Hypertension Consensus Panel and Veterinary Blood Pressure Society Recommendations (AHCP-VBPS Validation) Rationale Recommended standards for the validation of BP measuring devices in people have been published by the Association for the Advancement of Medical Instrumentation. 66,67 For pressure measurements to be comparable among the devices in veterinary use, it will be important to establish universal veterinary standards for the validation of BP measurement devices. Such standards would foster the development of standard measurement protocols and reliable reference ranges for dogs and cats. The current recommendations for BP validation of the Association for the Advancement of Medical Instrumentation have been met by one BP measurement device according to one study,56 although the device failed a validation test in a second study.²² Both of these studies utilized anesthetized cats, in which pressure measurements are more readily obtained, are more homogeneous, and are probably not directly applicable to screening conscious patients. The panel recognizes that obtaining accurate and precise BP measurements is substantially more difficult in dogs and cats than in people. Nonetheless, we recognize the utility of the existing guidelines and recommend that modified guidelines be applied to indirect devices used in veterinary medicine for validation purposes. Until validated devices become widely available, the approach endorsed by this panel is to utilize receiver-operator curve characteristics.35 #### Calibration Even if validated, the calibration of a device can drift over time, producing an unrecognized artifactual bias that can lead to false diagnoses. An indirect BP measuring device used in clinical practice should be tested against a standard to assure accuracy at least twice annually. There are routine methods and standards for testing the accuracy of these devices,66 and the instruments should have a test mode and instructions for achieving this calibration check. Veterinary practices probably
will not have a mercury manometer or national pressure standard readily available. A suitable alternative is to compare the device against a second pressuremeasuring instrument. In brief, the static pressure output of the device should be compared to a static pressure-measuring device (eg, an aneroid manometer) at 10-20 mm Hg increments across the clinically useful range of 30-300 mm Hg, to ensure agreement within ± 3 mm Hg across this range. Aneroid manometers used in conjunction with an indirect device, such as a Doppler ultrasonographic instrument, should similarly be assessed for accuracy by comparison to a second device. Failure to meet these accuracy criteria should lead to action to replace or repair the indirect device. #### Validation - Our recommendations are based on the guidelines of the Association for the Advancement of Medical Instrumentation (AAMI) for validation of blood pressure (BP) measurement devices intended for use in people. However, this panel recognizes that: (i) BP measurement is substantially more difficult with indirect devices in dogs and cats than in people; (ii) the available data in the literature demonstrate substantial heterogeneity of indirect devices; (iii) no device presently in use is likely to meet the published AAMI guidelines when applied to conscious dogs and cats; (iv) the adoption of a standardized approach to the evaluation of indirect BP devices is valuable in veterinary medicine; and (v) the intervention points in dog and cats are substantially higher than those currently used in people. - The tested indirect device should be compared to a direct, intraarterial pressure measurement device or an indirect device for which validation has been previously published in a refereed journal. A device is validated for only the species and conditions in which the validation test is conducted. Thus, a device validated for use in anesthetized cats is not validated for use in anesthetized dogs or conscious cats. A device may be validated for systolic measurements, diastolic measurements or (preferably) both. - In general, the criteria and recommendations of the AAMI must be followed. These include recommendations for patient selection, pressure range, number of observers, blinding of observations, and reporting of study findings. - System efficacy is validated if the following conditions are met: - The mean difference of paired measurements for systolic and diastolic pressures treated separately is ±10 mm Hg or less, with a standard deviation of 15 mm Hg or less; - the correlation between paired measures for systolic and diastolic pressures treated separately is ≥0.9 across the range of measured values of BP; - 50% of all measurements for systolic and diastolic pressures treated separately lie within 10 mm Hg of the reference method; - 80% of all measurements for systolic and diastolic pressures treated separately lie within 20 mm Hg of the reference method; - the study results have been accepted for publication in a referred journal; and - the subject database contains no fewer than 8 animals for comparison with an intra-arterial method or 25 animals for comparison with a previously validated indirect device.